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and to investigate the potential for dramatically improved performance
inherent in the knowledge base developed under this program.
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GLOSSARY

Binary hologram: A hologram in which the fringes are of uniform optical density, in transmission
holograms typically high density black lines.

Bragg hologram: A volume hologram formed in thick photopolymer for which the Bragg condi-
tion is satisfied.

CGH: Computer Generated Hologram; always computer designed, sometimes
fabricated by direct photoreduction of computer output plots, sometimes
fabricated by e-beam exposure of photoresist covered glass.

COE: Conventional Optical Element.
Color Correction: Balancing of HOE dispersion and COE chromatic aberrations so that the

HOH performance is independent of source wavelength over some range of
wavelengths.

Diffraction efficiency: The ratio of the power in the first order diffracted beam to the power in the
incident beam. Typical diffraction efficiencies: binary transmission HOE, less
than 10%; sinusoidal absorption HOE, less than 6%; phase HOE, 40%; Bragg
HOE, approaching 100%.

Dispersion (1) A technique which permits the balancing of the wavelength sensitivity of
Compensation: individual HOEs between members of a HOE-pair; (2) combining the

mutual compensation of a HOE-pair with correction for chromatic
aberration of COEs present in the HOH. Each HOE corrects for the
residual aberration of its closest neighboring COE.

HOE: Holographic Optical Element.
HOE-pair: Holographic optical element consisting of a matched pair of HOES designed

to work in tandem for dispersion compensation and beam shaping.
HOH: Holographic Optical Head. An optical head containing HOEs.
Hybrid head: HOH containing both HOES and COEs.
Intermediate HOE: HOE used to make a working HOE. An intermediate HOE is usually

computer designed.
IR hologram: Infrared hologram, used in the infrared. Present technology does not permit

direct exposure of IR holograms at their working wave length because IR-
sensitive photoresist is not available.

Sinusoidal hologram: A hologram in which the fringes vary approximately sinusoidally in optical
density, typical of a hologram generated directly by interference of two beams.

Spot size: The diameter at which the power density of a focussed beam falls to one-half
its maximum value (FWHM).

Working HOE: Hologram used in an optical head.
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1.0 INTRODUCTION

1.1 Program Goals, Scope, and Achievements

The objective of this program was to show the feasibility and advantages of holographic optical ele-
ments (HOEs) for use in optical disk read/write heads. Specifically, the feasibility of using HOEs in
an optical he;d that (1) operates at laser diode wavelengths (780 or 830 nanometers) and (2) can
achieve a one-micron diffraction-limited spot was to be demonstrated by design and verifying
measurements.

These goals have largely been achieved, despite severe difficulties in the confirmatory measurement
process. Furthermore, the utility and practicality of this approach has been greatly enhanced by the
recent successful introduction of the single element aspheric objective lens in read/write optical head
design. Aspheric objectives currently are the closest approximation to the ideal read/write lens: they
are rugged, lighter than multi-element objectives and appear capable of smaller spot sizes. However,
their performance is limited by chromatic aberrations. Other aberrations are, at least in principal,
controllable, but any optical head objective using only single element glass optics, even aspheres, can
not avoid chromatic de gradation. Considering that the spectral bandwidth of diode laser sources is
only a few nanometers', it is a remarkable testimony to the optical quality of these lenses that they
are color limited. It also implies that no conventional lens is likely to afford further major improve-
ments in spot size. It is precisely for correction of small residual aberrations, especially wavelength
dependent ones, that holographic optical elements are most suited.

Specific achievements of the program are as follows:

1. Near diffraction-limited performance has been demonstrated: spot size of less than 2 microns full
width with clear diffraction rings.

2. Color correction over a range greater than ± 5 nanometers has been demonstrated.

3. Calculational techniques have been significantly improved. Design characteristics can be
determined and performance predictions can now be accomplished using the standard optical design
program Super Oslo2 in conjunction with special routines written in FORTRAN.

4. A new optical head has been designed using two aspheric lenses (to date, we have used two piano-
convex lenses) which we calculate to produce diffraction-limited spots over a spectral range of +/- 15
nanometers. If achieved in practice, this degree of dispersion compensation will permit diffraction-
limited operation over a temperature range of +/- 40 'C. Furthermore, this performance is achieved
without need to refocus the system as laser wavelength changes.

5. The jigs and fixtures needed for fabrication of HOE-pairs have been reworked and improved,
making it possible to produce HOE-pairs with better performance than already observed.

6. Extensive tests have been run on a commercial apparatus (the SpotScan3 0390) which, we believe
is the optimum instrument available for verifying sub-micron spot sizes in a workable configuration.

' Typical spectral bandwidths of laser diodes used in read/write applications are 3 - 5 nanometers,
with temperature drift of approximately - 0.3 nanometers per *C.

2 Super Oslo is a registered trademark of Sinclair Optics, Inc.

3 SpotScan is a registered trademark of Photon, Inc.



7. Intensive efforts to interface our Computer Generated Hologram (CGH) designs to electron-beam
(e-beam) machine input requirements have had positive results. Two e-beam facilities have been
identified which can generate and are willing to attempt e-beam holograms for us. Although details
still need to be worked out, it appears that this technology will be available to simplify the fabrication
procedure and reduce fabrication errors.

& Significant progress has also been made in developing a technique to make volume infra-red (IR)
holograms, which are known to have diffraction efficiency approaching 100%. This technique is
unique and has not been reported in the literature by other researchers.

12 Background Information

1.2.1 The Need

The rapid development of modern micro-computers has created a requirement for low cost mass data
storage, especially in the military environment. Optical disk technology is now maturing and is ideally
suited for this application. A key component of an optical disk system is the optical head. However,
optical heads made with conventional optical elements (COEs) severely limit read/write system
performance because they are complex, relatively heavy and large. They are also a significant cost
element. (These conditions do not apply to the commercial audi, compact disk where laser power
for writing is not an issue and where read errors are usually not observable by the human ear.)
Conventional optical elements are used in the optical heads for a group of related optical storage
systems like CD-ROM (Compact Disk-Read Only Memory), WORM (Write-Once-Read-Many)
drives, and erasable optical disks.

If we can improve the performance and reliability of the optical head and reduce its size, mass and
cost, optical disk systems, particularly the erasable disk system, could become better adapted for
military computer systems. More particularly, an increase in storage capacity by 100 times is likely
to be possible with smaller spot sizes.

There are many commercial optical heads on the market. However, these optical heads are composed
of bulky lenses, prisms, beamsplitters, etc. With conventional elements, it is difficult to reduce the size
and weight of the optical head. The recent introduction of aspheric lenses has reduced the complexity
of one component of the conventional head, but beam shaping prisms (to render the elliptical laser
beam into a circular cross section) are still required.

In the read/write optical head, wavelength compensation becomes a very important because
compensating for chromatic aberrations requires multi-element lenses to maintain a small focal spot.
Uncompensated 3berrations reduce depth of focus because of the resulting large focal spot size.
Shallow depth of focus, in turn, increases the demands put on the optical head servos and today limits
performance for read/write operation (or even for reading high density pre-written data). Faster servos
are larger and more massive.

Thus, conventional technology is about at its limit. Smaller spots, which permit greater data density
and higher data rates, now seem to require larger and heavier heads which limit servo response time
and also the number of heads possible per disk. This severely limits access time and has a small
negative effect on data rate once the data has been accessed.

Also it may be possible to equip an optical disk with several small holographic optical heads which
would reduce access time in proportion to the number of heads.

High density optical disk are commercially available: small disks up to 300 Megabytes capacity, and
large disk up to 10 Gigabytes. This capacity is needed for tactical military data storage. Thus,
developing optical heads with high response speed becomes urgent.

2



1.2.2 Technical Background

Practical optical disk storage systems all use semiconductor diode laser sources because they are small,
rugged, reliable, and energy efficient. Unfortunately their output has several undesirable characteristics:
(1) The beam divergence is large and different in the planes parallel and perpendicular to the laser
stripe. This leads to elliptical beam cross sections. For consumer products (audio compact disks),
the beam is clipped to a circular cross section, which is very wasteful of energy; (2) The relatively low
power output of a semiconductor diode puts a premium on using all its output for writing data to
optical disks. Writing uses much more energy than reading, and wasting any laser energy reduces
writing speed. Also spot shape is elliptical unless the beam is circularized properly, which clipping
does not really accomplish. Therefore, prism pairs are universally used to circularize the beam; (3)
the output is several nanometers wide and drifts with temperature. Conventional heads rely on the
use of multiple elements to achieve good image quality and spectral tolerance. A single aspheric
element can produce an excellent image but can not control chromatic aberrations at the same time.

In principle, holographic elements, used in the pair arrangement developed at the University of
Delaware, can simultaneously correct for the astigmatism of the laser source, for the spectral
dispersion of the individual holograms and chromatic aberrations of the focussing elements, replace
the complex beam shaping elements, and also correct for other residual aberrations. If successful,
such a hybrid head could be smaller, less massive, less expensive, and more reliable than its
conventional counterpart. Before embarking on an ambitious program to produce a working optical
head, questions concerning spot size, dispersion compensation, and efficiency all needed to be
answered in a laboratory model small enough to ensure packaging of an advanced model.

It was to address these questions that the present demonstration program was initiated. A pair of
holograms were to be used in conjunction with a pair of simple piano-convex lenses to demonstrate
near diffraction-limited operation (one micron goal), small package size, dispersion compensation at
least in the laboratory environment, and scalability to a working optical head. Ancillary questions of
fabricability were also to be addressed.

13 Results and Recornmcndations

An experimental optical head using HOEs has been set up in our laboratory. The observed
reconstructed spot size is less than 2 lim in diameter. Wavelength tolerance is ± 5 nm centered at
832 nm. A new design using two aspherical lenses and two HOEs would operate over ± 15 nm. The
new design can be the basis of a practical, highly compact, and reliable optical head. Performance
can be significantly enhanced by using an e-beam pattern generator to fabricate an intermediate CGH
needed to process the working HOEs. This will simplify the fabrication procedure and greatly reduce
fabrication errors.

Significant progress has also been made in developing a technique to make high-efficiency volume IR
holograms, whose diffraction efficiency may approach 100%. This technique is unique and has not
been reported in the literature by other researchers.

Continuing effort is recommended to use an e-beam pattern generator to fabricate the intermediate
HOES, to design and fabricate high efficiency volume HOEs, to build an advanced engineering model
HOH based on the aspheric design, and to investigate the potential for dramatically improved
poi-formance inherent in the knowledge base developed under this program.

3



20 TECHNICAL DISCUSSION

2.1 Tednical Approach

2.1.1 The Optical Layout and Its Rationale

The experimental system involves two single-element piano-convex lenses and two holograms. This
configuration can correct the ellipticity of the laser beam and provide diffraction-limited performance.
As shown in Fig. 1, the optical configuration consists of a laser diode, S, a collimating lens, Li, a
compensation hologram, Hi, a main hologram, H2, and an objective lens, L2. The output of the laser
is roughly collimated by the collimating lens. The simple collimating lens is inherently highly
aberrated and is working at a high numerical aperture (approximatelyf 1), so that perfect collimation
would not be possible in any event. Additionally, optimization of system performance over a band
of wavelengths is achieved with a slightly uncollimated wave front impinging on the compensation
hologram. The compensation hologram performs two functions: (1) it corrects the incident wave front
for the aberrations induced by the collimating lens, and (2) it diffracts the incident rays through a
large angle which changes the beam cross section. As will be shown, the wave front emerging from
the compensation hologram would ideally be perfectly collimated and normal to the hologram plane.

Because the optical axes of the incident and exiting beams are not parallel, these beams have
different diameters. Thus, the beam shape factor (ellipticity) is changed by Hi from 2.69 to 1.39. H2
reduces the ellipticity factor to unity.

The main hologram, HZ also deliberately aberrates the transiting wave front to pre-compensate the
aberrations induced by the objective lens. (The wave front exiting from H2 is designed to be identical
to the wave front which would be propagated by L2 from a point source in the desired focal plane,
except that the propagation direction is reversed.) That is, the beam propagated from H2 exactly
compensates for the aberrations of the objective. Thus a diffraction-limited spot can be formed by
the objective, at least at the design wavelength.

The HOE-pair, acting together compensate for the wavelength drift of the laser source and for the
inherent wavelength sensitivity (chromatism) of the system components.

Either the angle of incidence on the compensation hologram or the angle between the compensation
and main holograms is a free parameter. (Together they must provide beam circularization.) They
can be chosen to maximize the wavelength range over which the HOE-pair can produce a diffraction-
limited spot. Without aberrated lenses, this angle can be specified analytically; in practice, iterated
calculations are needed to optimize performance.

Holograms are diffraction gratings on which the grating parameters can be locally controlled. They
are formed by interfering "reference" and "object" beams on a photo-sensitive substrate so that the
interference pattern maxima expose the substrate in the desired grating pattern. Being diffraction
gratings, they disperse incident radiation through wide angles, depending on wavelength. By operating
a pair of identical parallel diffraction gratings or HOEs (Sincerbox, in References) in equal but
opposite orders (+1 and -1), the net angular dispersion can be made to vanish for an incident beam.
In our case, the HOE-pair members can not be identical because it is made inherently asymmetric
to correct beam ellipticity. Nonetheless, dispersion can be minimized at a single design wavelength.
The design question then becomes trading off dispersion compensation for aberration correction of
the lenses. That this can be done successfully is demonstrated by the results of this program.

Piano-convex lenses are the simplest possible lens and have very large aberrations. Their choice was
intended to demonstrate the power of our technique. Within our ability to measure the results, this
aspect of the design appears to be successful.

4
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Fig. 1 Configuration of the Baseline Optical Head.
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However, well corrected single-element aspheres are a better candidate for a future system. Because
they are single elements, molded aspheres can not compensate for chromatic aberration. Multiple
element systems can, but they suffer from other residual aberrations and fabrication problems. The
combination of a wavelength compensating dual-HOE and a pair of molded single element aspheres
is likely to yield sub-micron spots with wide temperature (read dispersion) compensation.

2.1.2 Design of the HOE-pair

Design of the HOE-pair has been reduced to calculation of the parameters necessary to compensate
for laser wavelength drift and lens aberrations. For reasons to be explicated below, it is necessary to
fabricate the HOE-pair through the use of an intermediate hologram.

Note that we determined what the second HOE should do to the wave front incident upon it by
specifying the desired output (a diffraction-limited point in the focal plane). That output from the
physical hologram is called the "reconstructed" beam because it reconstructs the output of the desired
ideal optical system. Similarly, the beam which is used to illuminate the physical hologram is called
the "construction" beam.

As mentioned above, the object and reference beams are used to fabricate the hologram. If space
permitted and if IR sensitive photoresist were available, the object beam could be generated by
passing laser radiation through the actual optical subsystem whose aberrations we want to coirect.
The reference beam is frequently a physical beam identical to the desired construction beam except
in orientation. (It is the conjugate of the construction beam.) The reference beam is directed at the
photosensitive surface so that the interference pattern resulting from its interaction with the object
beam would make a hologram that properly redirects the reconstruction beam. Because the wave
front between the holograms is collimated to first order, the reference beam used in making either
hologram is also nearly collimated, a condition important to making high quality holograms at one
wavelength for use at another. Either the reference beam or, more frequently, the object beam can
itself be deliberately distorted, for example in our case, to compensate for the fact that the object and
construction beams must be of different wavelength.

In our case, where it is not feasible to use a real optical system to generate the master reference wave
front, a "synthetic" Computer Generated Hologram (CGH) can be used to generate the working
HOE. [Ih, et al (1986a, 1986b)], [Wyant (1978)]

After computing the design of the optical system and analyzing its performance, fabricating the
HOE-pair becomes the key factor in realizing the design.

Because the wavelength of laser diodes are in the near IR region, direct recording of these holograms
is not feasible. First, recording photoresists sensitive to the laser wavelength are not commercially
available. In fact, none of the vendors we have approached will admit t. having such photoresists in
development, although there persist unconfirmed reports that at least one manufacturer has developed
the requisite technology. However, even if IR-sensitive photoresist were available, they would not be
useful in fabricating HOEs for a practical optical head: the hybrid head optical layout is too compact
to allow introducing a collimated reference beam to interfere with an object beam passed through a
collimating lens. Therefore, direct in-place generation of the HOE-pair by interfering beams is out
of the question, and the alternative CGH route was taken.

There are two possible approaches to HOE construction without interfering physical beams. The
first, discussed above briefly, involves computer generating an intermediate HOE which can then be
used to distort the object beam to make the working HOE. The intermediate HOEs can be
generated optically or by using an e-beam pattern generator designed for manufacturing reticles
(masks) for semiconductor integrated circuit fabrication. The second approach involves attempting
to use an e-beam apparatus to generate the working HOEs directly. Each approach has its own
peculiarities which we have not fully resolved.

6



E-beam generation of the final HOEs requires using an e-beam pattern generator at the limits of its
capability. Because these machines are designed to generate reticles for integrated circuit production,
they are not ideally suited for generating our final HOEs. Our working HOEs are approximately 3
mm in diameter with up to 1,000 steeply curved contour lines per millimeter. Typical reticle patterns
are smaller, much less dense and rectilinear. As a result, the data needed to drive a typical e-beam
apparatus can overwhelm many of the standard input schemes. Also, most mask makers do not have
the appropriate experience for our needs. The joint problem of input and experience has been
addressed, and direct generation of masters from which the final HOEs can be contact printed
appears worth further pursuit. See Section 2. 2. 2.

Because of the large size of our HOEs, e-beam generation of oversize reticles followed by
conventional photo-lithographic reduction is also impractical. Generation of intermediate HOEs by
e-beam apparatus does appear to be practical. To date, however, we have employed optical techniques
to fabricate intermediate HOEs.

2.1.3 Theory

Introduction. The concept entailed in the use of an intermediate computer-generated HOE to
fabricate a working HOE is simple. For example, the desired output wave front from the first
working hologram, the compensation hologram, is known. It is simply the perfectly collimated beam
from an ideal collimating lens with a point source at its focal point. Because the parameters of the
real source and collimating lens are known, it is possible to calculate the actual wave front impinging
on the hologram plane, and thus to compute and produce the intermediate HOE.

Because this object-beam-distorting-hologram can be made independently of the working system, there
is great freedom in designing it. In fact, the angle between the reference and object beams can be
made very small, which results in consecutive interference maxima being far apart. This means that
the distortion hologram may have only a few hundred contours rather than several thousand.

Also, because interference effects scale directly with wavelength, it is possible to design the
compensation hologram to be manufactured using light at one wavelength but used at another
wavelength. This technique is called two-wavelength operation. In our case, the distortion HOE can
be calculated to expose the plate carrying the photoresist for the working HOE with an argon ion or
he!ium-cadmium laser. The distortion HOE simply compensates for the fact that the working HOE
will operate in the near IR. The specialized computer programs developed to design the working
HOEs and the computer generated precursor distortion HOE have been greatly improved during the
course of this program.

In practice a distortion CGH is pen-plotted many times oversize and photoreduced to the correct size
to generate its associated working HOE. As may be expected, this is a difficult and delicate operation,
made possible only by the relative coarseness of the distortion HOE. Even so, the process is prone
to errors, which provided the motivation for our intensive investigation of using an c-beam apparatus
for generating the intermediate HOE; see Section 2.2.2. For a discussion of the
accuracy requirements for two-wavelength operation, see Wyant (1978).

Here we outline the procedure for making a working HOE using an intermediate CGH; detailed
descriptions are given in Ih, et all (1988 and 1989a).

First, the desired wave fronts of the object and reference beams of the working HOE at its working
wavelength are defined mathematically. We then determine the size, spatial frequency and resolution
of an intermediate CGH which is consistent with the available equipment. The CGH is then
computer calculated by reconstructing the working hologram at the chosen recording wavelength.
Accurate tracing of rays through the system described below enables the computer automatically to
include aberrations introduced by lenses in the beam paths.

7



After the intermediate HOE is designed and built, it is used to (re)create a distorted objective beam.
This distorted beam and an appropriate reference beam are superposed upon a photosensitive
substrate to make the working HOE. Fig. 2 illustrates the process.

In summary, the beam distorting intermediate CGH is designed to compensate for the fact that the
working HOE is fabricated at a wavelength different from its working wavelength. The parameters
of the intermediate CGH are calculated by determining what the working HOE should be, then
calculating what the working HOE output (reconstructed) beam would be if the input to it were at
the fabrication wavelength. The calculation continues by propagating this output to some convenient
location and superposing it there with a new reference beam at the fabrication wavelength. The
interference pattern at this convenient location defines the beam distorting CGH. When properly
conjugated (object and reference) beams at the fabrication wavelength are directed at a photosensitive
surface with a physical realization of the intermediate CGH in one beam (usually the object beam),
the desired working HOE is produced.

This technique has several other desirable features. Large HOEs with high spatial frequency can be
made easily, even on curved surfaces, and, because the working HOE is made optically, we have a
wide choice of recording materials. This method can also be extended to use visible light to make
high efficiency Bragg (volume) IR HOEs; see Section 2.2.4. Thus, the CGH provides a
powerful technique to solve the difficulties mentioned above.

There are many ways available to fabricate the intermediate HOE. - our HOH application, an
interferogram type CGH is preferred because of its diffraction limitt performance and low noise
reconstruction. Therefore, we evaluate the interference pattern to calculate the location on the CGH
of the interference fringes one by one. Because the curvature of the fringes is quite small, it is
sufficient to calculate the location of only a small number of points on each fringe. A simple
computer algorithm, normally a spline fit, is used to connect these points to form a smooth curve.
Then, when the reconstructed beam is traced through the hologram, the parameters of the diffracted
ray can be calculated.

Calculation of a CGH is tedious but straightforward for systems involving only conventional optics
and interfering beams. However, as explained above, design of the intermediate CGH requires
calculating the propagation of beams through the conventional optics, which shape the object beam,
and through the desired working HOE. The introduction of the desired HOE into the optical path
calculations is complicated by the fact that the rays from successive fringes on the working HOE
introduce additional phase changes. (This phenomenon is related to the introduction of secondary
structure in the output of an ordinary diffraction grating.) The additional phase change must be
treated correctly; we have developed two methods which do so and use both of them in each
calculation as a check on accuracy and convergence.

Calculation of CGH Parameters. A brief description of the theory of the holographic optical head
follows. For a more exhaustive treatment, see References.

The CGH we made is an off-axis reference beam hologram. The amplitude transmittance of a
hologram is given by

t(x,y) = 0.5 {1 +cos[,'(xy)-4,(xy)J},

where t,(x,y) and $o(x,y) are the phases of the reference and object beams used to record the
hologram.

The maxima fall at

t,(x,y) - to(x,y) = 2nr.
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Analytic conditions on the chief ray can be determined in the absence of aberrations, which provides
a crude estimate for starting the calculation. To design the CGH, the computer program performs
light ray tracing (because light rays are normals to the wave front) and then finds the phase of the
deformed wave by calculating the optical path length. Unfortunately, the individual hologram grating
constants are known only on the calculational grid attached to that hologram. Therefore, it is not
possible simply to trace a fan of rays through the system starting either at the laser, or at the focal
point. To a first approximation, the compensation and main holograms can be calculated indepen-
dently, but the piercing points of arbitrary rays traced forward from the calculational grid of the
compensation HOE to the main HOE do not coincide with known points on the calculational grid
of the main HOE, and vice versa. Therefore, we solve the ray trace iteratively, first defining the
HOEs separately, then tracing rays through them, then interpolating in a coordinate system attached
to each surface, then retracing. This process is repeated until an equitably distributed fan of rays is
traced to a converged solution.

Here the vector form of geometric optics is preferred for the ray trace. First, for each ray traced, the
coordinate points are determined on each surface intersected. Then its direction cosine is calculated.

For a refracting surface, the governing equation is Snell's law, given here in vector form.

nf i.x ft = n'fit,,,xxft

where nj and n', are the refractive indices of the media before and after the surface, ti. and t..
are unit normals along the incident and refracted rays, and ft is a unit normal to the surface.

If the surface is a hologram, Welford's equation is used instead of Snell's Law.

A X (td - tJ = m (XA) [fr X (t. - tr)

where t, t , and fir are, respectively, the unit vectors for the object beam, the reference beam, and
the normal to the hologram surface in the recording process. Similarly, ti, id, and ftc are the unit
vectors of the reconstruction beam, the reconstructed beam, and the normal to the surface of the
hologram in the reconstructing process; X and Xc are the wavelengths in the recording and
reconstruction process respectively; and m is the diffraction order. In this way we can get the
intersection points (x', y', z') and the direction cosine of the refracted ray, (l',m',n'). These data
permit propagation of the ray to the next surface. There a new coordinate system is established, and
the tracing continues as above, using either Snell's or Welford's formulation. Ray tracing is stopped
when the ray reaches the image plane.

In order to find the phase of the deformed wave, Ed, we can use the grating equation

d(sine i + sined) = mX (m = 0, + 1, + 2,...)

(and the fact that light rays are normals to the wave front) to determine optical path and, therefore,
phase. Alternatively, we can use the cikonal equation to determine optical path.

= grade/I gradG I

As discussed above, we use both techniques and compare them as a check on calculational accuracy.

Two-wavelength Operation. A hologram can easily be exposed at one discrete wavelength and used
at another discrete wavelength, a process usually called two-wavelength operation. It is necessary only
to ensure that, at all points,
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[sin {Oi(X)} + sin {Od(I)}]/k I = [sin{Oi(X2)) + sin{Od(X)}],X2.

This condition can be easily satisfied with holograms made with plane waves (simple gratings).. In
general, wave front phase distortions (or compensations) must be introduced into either the object or
reference beam, or both, during the recording process. If high resolution and diffraction limited
performance are not required, approximate methods have been developed to achieve the required
results. However, for the HOH application, high resolution and diffraction limited performance are
required. We have developed a unique method to generate a CGH, outlined above and in detail in
Ih, et al (1988 and 1989a), which introduces the exact phase compensation into the object beam.

As described above, achieving the two-wavelength condition requires the introduction of a wave front
distorting CGH into the object beam used to make the working HOE. These distortions guarantee
satisfaction of the two-wavelength condition when the distorted object beam is superposed with an
appropriate reference beam to make the final working HOE; see Fig. 2.

Using this method, near diffraction limited performance has been demonstrated; a spot size less than
2 Am with clear diffraction rings. (We attribute not achieving the theoretical minimum spot to
fabrication errors in making the CGH and misalignment of the fixturing used to generate the working
HOE. See 2.1.5 for details of the fabrication procedure.)

Dispersion Compensation. Individual holograms are diffraction gratings and exquisitely sensitive to
wavelength changes (highly dispersive); a single hologram can not be made even approximately
dispersion free over a finite range of operating wavelengths. A HOE-pair, is needed.

Also, because the asymmetric HOE-pair members are not simple gratings with the same unique
spatial frequency, dispersion can not be completely compensated. However, dispersion can be made
to vanish at a predetermined nominal operating wavelength, thus permitting satisfactory performance
over a range of wavelengths centered on the perfectly compensated wavelength.

To achieve dispersion compensation between the members of the HOE-pair, it is necessary to
determine conditions on the major free parameters of the optical layout which minimize dispersion.
These parameters are the angle of incidence of the chief ray on the compensation HOE and on the
angle between HOEs. (These two parameters are not independent; they are constrained by the
requirement that the incident elliptical beam be circularized by the HOE-pair.) The range of
dispersion compensation can then be determined numerically by investigating spot diagrams around
the fully compensated wavelength. Fortunately, an analytic expression can be derived for an ideal
unaberrated system in which the beam between the HOEs is strictly parallel. This provides the
starting point for numerical calculations. Fig. 3 shows a convenient set of angular parameters, from
which the angle between HOEs can be derived.

From the hologram equation, we have for the compensation and main holograms, HI and HZ
respectively,

a(sinOoi - sine,,) = X

and

b(sine. 2 - sinOe) = X

By manipulating the derivatives of these equations we find,

dOoJdX = -dor/dX

From which we get
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Fig. 3 Compensation Condition for a HOE-pair.

dEr 2,/d = (sinr 2 - sin 0 o2)/\coSE) 2 - cos9o2(SinE), - sin9oi)/scosEricose 2 = 0,

and if

or, = (r 2 = 0
sine01 = tan e0 2,

then

de),/dX = 0

which is the condition for perfect compensation.

Spot diagrams vcrifying system performance over a range of wavelengths about the nominal design
wavelength arc shown in Section 2.1.4. Thcse ray traccs automatically include lens aberrations and
residual dispersion of the -OE-p:ir.

Thie critcrion for :cceptabic perlormance is that the spot size must be less than one Am. The nominal
design with which this program started is wavelength compcnsatcd over +/- 5 nanometers. The newer
design using moidcd asphlcric elements is compensated over +/- 15 nanometers.

Correction of Chromatic Aberration. InI this subsection, we demonstrate the conditions for making
a HOE correct the chromatic aberration of a lens. To correct the chromatic aberration of a lens used
in an optical head. it is sufficient to hold !he focal length constant over the desired wavelength range,
because_- the lenses h:ve m.inimal fiekl. Therefore. we need only to determine the local grating spacing
for a I I)E coupled to a lens which holds the lens focail point constant over a range of a few
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nanometers. To be concrete, consider the chief ray and any other arbitrary ray incident on tile main
HOE. It is sufficient to show that the optical path from HOE to focal point can be made (ie same
for both rays. We do this for a thin lens; in reality, the condition is obtained by ray tracing.

From Fig. 1, it can be seen that the chief ray can be made to exit normal to the HOE by
construction. Also, because the wave front between holograms is collimated, to first order all rays
strike the main HOE at the same angle, 3. Sec Fig. 4.

\ ...................

-------------------------...... ...... ...................................

A B

Fig. 4 Geometry of Chromatic Aberration correction.

The lens equation is

1/f(X) = [n(X) - 11 (1/r1 - 1/r2).

The grating equations for the arbitrary and chief rays are, respectively,

sinp - sine = K/a

sinp - sine1 = K/a1.

where a and a, are the fringe spacing on the HOE at C and 0, respcctivelv in Fig. 4, and E is the
angie between the diffracted output ray and the normal to the HOE.

By definition. E) = 0. so

sinE = K/a - K/a.
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From Fig. 4, we can obtain the relationship between the intercept height of the arbitrary ray, <OC>,
and the focal length <OA>. This rclationship can be found either by geometrical construction or
by application of the optical invariant [Smith, page 421.

<CA> = <OC>[<OC>[1/r - +rn(X)-i] +

If <OA> is nearlv indc-cndcnt of wavclcngth, the system is chromatically corrected. Setting the
derivative of <OA> with respect to wavc!cngth equal to zero, and then making the obvious
substitutions leads immcdia.tdcv to

d<OA>/dX = 0

when

sin 2 E = I - [<OC>(dn/dX)l/r - 1!r2)1'

This means that the lens can be chromatically corrected to first order by a properly designed HOE.
With this as a starting point, a region in the neighborhood of the first order design can be explored
to optimize a real system design.

2.1.4 Calculational Results

Design calculations were made for the baseline system which uses a pair of identical high index piano
convex lenses. As a result of our improved calculational ability, we were also able to design a system
using molded aspheric lenses with dramatically improved performance. Fig. 5 shows the layout of this
configuration. This improved calculational ability also made the spot diagram calculations more
accurate.

S

T12

Fig. 5 Configuration of the Advanced Optical Head (Aspherical Optics)
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Figs. 6, 7 and 8 are spot diagrams calculated for the baseline system. Fig. 6 was calculated for the
nominal design operated at a wavelength of 837.0 nanometers, 5 nanometers more than the design
wavelength of 832.0. A large majority of the rays fall well within a one micron spot, with four outliers
slightly more than one micron apart. Fig. 7 shows that the design is tolerant of angular misalignment
of the HOE-pair. Tilting the second HOE 0.50 out of alignment does not significantly increase spot
size while operating at 837.0 nm. Fig. 8 shows the effects of incorporating a 4 micron axial
displacement of the laser with the other misalignments; in this case, aberrations tend to cancei
somewhat and the total spot lies within a one micron circle. In all three cases, the Reference Height
(radial displacement of the nominal design chief ray) is negligible, less than 2.1 x 10-15 mm. However,
these spot diagrams are calculated at best focus; refocussing needed to optimize the focal position
(given as FOCUS in the Figures) ranges from 7.9 to almost &7 microns. These tolerances are
acceptable for tilt and axial displacement, which would either be build in as fabrication errors or, at
worst, change slowly, perhaps with temperature, and would therefore be compensated by the optical
head servo system. Wavelength change on the order of 5nm may not be so fast that the optical head
servo would not follow the induced 8-9 Am focus shift, but this may be problematical in practice.
Also, chromatic aberration of the lenses was not considered in these calculations. (Compensation for
lens chromatic aberration has been shown to be feasible in Section 2.1.3).

Using our new computational capability, we calculated spot diagrams for a HOH using monolithic
(singlet) molded aspherical lenses. Because their spherical aberration is much smaller than that of
the baseline piano-convex lenses, we were able to design a 2 to 1 reducing system; the focal length
of the collimating lens is twice that of the objective. Really significant improvement was found. This
design can be recommended for a real system.

Figs. 9, 10, and 11 are spot diagrams for the aspheric design. They are similar to Figs. 5, 6, and 7,
except that the operating wavelength has been shifted 15 nm from nominal. For the nominal system,
and for the angularly misaligned system, the total spot size is well under 1/2 micron in diameter,

with axial displacement of the laser, the spot is significantly smaller than one Am. Most signiflcantly.
there is no need to refocus.

With a +/- 15 nanometer wavelength range, this head would perform satisfactorily over a total range
of about 80' C.

2.1.5 Fabrication of the HOE-pair

In addition to the iterative calculation which leads to an optimized design, numerous calculations near
the nominal were made to determine tolerances for assembly, manufacture and for the working
environment.

After calculation by the computer program, the CGH is plotted by a large pen plotter (Watanabe
MP1000 or Tektronix 4663S). This calculation can now be performed on an AT class PC under DOS
as well as on a Unix based VAX system.

The pen plotted CGH is then photoreduced, and the reduced plate mounted on a precision
micrometer-controlled carrier and introduced into the object beam path. Meticulous adjustment is
required. Finally, a blue laser beam at 441.6 nm is used to record the working HOE for use at 832.0
nm. The several steps required to produce a working HOE are shown in Fig. 2.

The output spot with piano convex lenses was measured in several ways. Although it was impractical
to determine the Strehl ratio, the spot size is clearly less than 2 microns, a close approach to the
diffraction limit for this system. The spot size for a diffraction-limited beam is caXFe. For an ideal
point source, a = 2.44 when the spot diameter is measured between the first zeros of the Airy pat-
tern. For a TEMoo Gaussian laser source a = 1.57, where the spot is measured to the l/e amplitude
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In our case, we appear to have attained ot = 2.4 to a point where the intensity is approximately half
its maximum value.

Nevertheless, this particular optical head is still a experimental model, and much improvement is
possible in the construction of the head, in fabrication techniques, and in measurement of the results.
Therefore, work was undertaken to make the optical head more accurate and more practical. This is
reported in detail in Section 2.2

22 Optical Head Improvement Effort

For the past year, we have concentrated our efforts on improving performance of the holographic
optical head and in improving our ability to design, predict, and measure that performance.

2.2.1 Improved Test Equipment

In order to determine the spot size more accurately, we developed a highly accurate micropositioner
incorporating a piezoelectric drive to improve our knife-edge tester. This has an resolution of 0.1 Am
which can be observed on an electronic position indicator. In this way a more accurate and reliable
result can be obtained.

Also, a new test instrument, the SpotScan Model 0390 Optical knife-edge profiler, has been purchased
with other funding. When used with a software package available from the manufacturer, measured
data can be interpreted automatically and spread functions, spot size and the Strehl ratio, etc. deter-
mined. This capability is needed to test the extremely well corrected optical head at the sub-micron
level. However, the mechanical configuration of the present test model optical head is not compatible
with the detector head of the SpotScan. The very compact head has a small back focal distance (1.3
mm), and there is insufficient clearance to mate it to the SpotScan. We have learned that Photon Inc.
has introduced a new measuring head which would make the measurement more accessible in tight
spaces. In addition, our next optical head will be designed to be more compatible with the SpotScan.

2.2.2 Investigation of E-Beam HOEs.

Using an c-beam machine tu fabricate holograms can avoid very tedious optical alignment work that
requires very precise optical and mechanical components and that also needs highly skilled personnel.
This method can eliminate many potential error sources, because the e-beam mask can be copied onto
a high efficiency substrate. In the long run, making at least the intermediate holograms with an
e-beam pattern generator is likely to be both simple and cost effective.

At the present time, however, e-beam generation of high quality holograms is still a subject of
intensive research. The availability and performance of e-beam pattern generators have improved
significantly during the past several years. Unfortunately, several hurdles remain to be overcome. The
most immediate one is compatibility with our data format, which is expected to be resolved with two
potential vendors. The others are c-beam resolution and the size of the hologram which can be made
at a supportable cost. We have made important progress in this area which is described below.

We conducted a survey to investigate how many institutions have the capability to, and interest in,
making complex holograms using an e-beam. To date, we have identified three companies and a
university which may be able to satisfy our needs. These are APA Optics Inc., Blaine, Minnesota;
Photo Sciences Inc., Irvine, California; Mirage Holography Inc., Dayton, Ohio; and the University
of California at San Diego. The survey shows that these institutions have experience in making
CGHs at least as difficult as the intermediate HOEs.

The greatest difficulty for e-beam generation of intermediate HOEs lies in translating our output to
an acceptable input format for the e-beam pattern generator. UCSD has been very cooperative in
this effort, and we have been able to write a computer program to reformat our output suitably for
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them. At this time, we can log onto the UCSD computer directly to transfer data and perform
calculations. This provides great flexibility and convenience in what will be an iterative process.
Unlike some mask houses, there is virtually no wait between sending the data and e-beam generation
of the HOE. This will greatly reduce turn around time. This effort is still ongoing as part of a
Master's thesis.

Mirage Holography, Inc. uses AutoCad4 compatible files as the input to their e-beam apparatus,
whereas we have been using DesignCAD at the University of Delaware. The output data of our
CGH is normally in DesignCad format. Recently we have discovered that the newer versions of
DesignCad can produce output in AutoCad format. This effort is also continuing as another Master
thesis.

We believe that working with UCSD will provide us with the flexibility and innovative approaches for
research related activities. We believe that the Mirage holography Inc. would be a more reliable
source and can provide better quality HOE's. We are happy that both have been very cooperative
and believe this strategy will assure us the success of this R/D effort.

In principle, by using wet chemical processing for the electron resist and chromium coated quartz
reticles, the minimunm feature size of e-beam reticles can be held to less than 0.1 Am. Thus in the
near future, with further R&D effort, it would be possible to manufacture a HOE directly, bypassing
the intermediate step. Handling of the vast amount of data can be simplified by using special input
and output routines for our CGH program. Routines that transmit data between Super-Oslo and our
CGH software (written in Fortran) are largely completed. The CGH program can be run on a Unix
based VAX computer or a DOS based PC.

If direct e-beam generation of a working HOE is feasible, it will be the most accurate and simplest
technique to use. However, there still remain fundamental question revolving about the use of binary
holograms as the working HOE. These are based on experience reported over the last few years.
Whether this will be a problem, or even if the high contrast will persist through replication of the
reticle, can only be determined by experimentation. In any event, using these improved programs, we
are in a much better position to produce e-beam fabricated CGHs for HOH applications.

2.2.3 Design Improvements

Improvement in holographic optical head design capabilities is directly related to our calculational
abilities. Accordingly, we have recast our existing design software so that it is fully compatible with
Super Oslo, a high performance general purpose optical evaluation and design program written for
use on AT class personal computers. Super Oslo has been installed on a recently acquired 386 AT
giving a speed increase of 4 to 5 times over its performance in its original installation in a 286 AT.
Existing subroutines have been improved to utilize the strengths of Super Oslo in ray tracing and
evaluation of conventional optics. With this increased capability we are able to perform more
extensive analysis on HOH designs and can also extend our designs to more complex cases, for
example, the HOH with aspheric lenses.

After extensive analysis of the baseline optical system, we find it can be improved to give wider
tolerance of wavelength variation and a smaller diffraction-limited spot. 'This improvement uses
unequal focal lengths for the collimator and objective lenses; the resulting improvement is not
surprising, but extensive exploration of design alternatives was prohibited by the computer effort
formerly required. A new optical system using two aspherical lens and two holograms has been
designed. This new system has a greater tolerance of wavelength variation. See Section 2.1.4 for
examples of the new analytical capability.

4 AutoCad is a registered trademark of Auto Desk, Inc.

5 DesignCad is a registered trademark of American Small Business Co.
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2.2.4 Efficiency Improvements

From the inception of this program, it has been known that high efficiency holograms would
eventually be necessary for a working system. It is also known that both multi-level thin phase and
volume (Bragg) phase holograms can achieve very high diffraction efficiency, with the latter
approaching 100%. Since our final holograms may exceed a spatial frequency of 1,000 lines per mm,
a multi-level e-beam hologram will be difficult to made for many years to come. We believe that the
development of IR Bragg hologram using a CGH is essential. Our technique for making thin IR
HOEs using a CGH can be readily extended to make a Bragg HOE.

It is now quite clear that the HOH's many advantages cannot be realized unless we can improve
the diffraction efficiency to above 85 %. Since IR volume holograms can not be directly fabricated
by an e-beam, the development of IR volume holograms using a CGH is essential. Once this is
achieved, we can then utilize the simplicity, reliability and high performance of HOHs for applications
in diverse environments. To this end, the basic mathematical analysis has been done and a
mathematical model has been established. To the best of our knowledge, this new approach is
unique; no similar work has been reported in the literature. The basic steps are described briefly below
and illustrated in Fig. 12.

We use the computer to generate two CGH's. The first is used to generate the distorted reference
beam, and second the distorted object beam. For an efficient volume hologram,
the Bragg grating condition must be satisfied. For step height Al,

2Asine i = X

% = ed

Like the approach used in calculating CGH parameters in Section 2.1.3, this condition can be used
jointly with the eikonal equation,

= grade/( grade

to calculate the interference fringes on the CGH.

These intermediate CGHs are then produced by an e-beam machine. They are then mounted in an
appropriate fixture and illuminated with a laser beam at the visible recording wavelength. The two
diffracted beams from the pair of intermediate CGH's will interfere on the hologram plate to form
the required IR volume hologram.This simple and elegant approach to generating the Bragg
hologram is a natural outgrowth of our use of a single intermediate CGH to produce working HOEs.
In the past, the intermediate CGH has been used to modify object beams only. By modifying both
the object and reference beam at the same time, we can make IR volume HOEs using a visible
wavelength. As mentioned previously, this technique is new and has not been reported by other
researchers.
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3.0 SUIMARY OF CONCLUSIONS, RESULTS, AND RECOMMENDATIONS

We have made significant progress and developed many new and innovative techniques for designing
and fabricating a HOH. Our sophisticated computer program, which combines powerful commercial
software and in-house programs, allows us to design and evaluate complicated optical systems
consisting of conventional optics and arbitrary HOE's. To our knowledge, no other existing software
has this combined capability. Our next goals are to realize this capability in a pracsical HOH and to
further expand its functionality and performance.

The following approach seems best suited to achieve these goals:

1. Use an e-beam to make intermediate CGHs for the HOH;

2. Build an engineering model of the HOH based on the optimized new design with two aspherical
lenses and two HOEs;

3. Improve the hardware and software of the SpotScan system and link it a computer and plotter so
that measurements and analyses can be done automatically and more accurately;

4. Design and fabricate a volume IR hologram to increase HOH efficiency:

5. Investigate new potentials of the HOH which may significantly improve performance. For
instance, we can deliberately offset the hologram angles so that the beam is focused at a slightly
different position for different wavelengths. Also we can adjust the chromatic compensation so
that the focal length simultaneously changes with wavelength in a controlled manner (say by 10
microns). These unique characteristics may allow us to do simultaneous recording (or reading) of
multiple tracks on different recording layers. This may also allow us to do tracking or focusing
by wavelength tuning instead of by mechanical means, as is now done. These features can become
practical when wavelength tunable lasers become available. Such lasers are already available as low
power devices. We believe the same techniques can be applied to high power lasers as well. These
new capabilities could become a reality in the near future. We must now explore these new
potentials to realize major improvements in performance later.

It is important to note that we have laid the foundation to design and fabricate a HOH with the
potential to dramatically improve performance. Even more important is that the new understanding
of HOE characteristics and novel fabrication techniques could open new applications now considered
impractical, e.g., compact high-resolution IR holographic imaging systems and imaging Lidar systems.
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